Calibration

John Horne, University of Washington

Calibration Objective

Generic Goal:

- a comparison between measurements: one of known magnitude or correctness made or set with one device and another measurement made in as similar a way as possible with a second device.

source: Wikipedia

Acoustic instruments (e.g. echosounder):

- compensate for differences between theoretical and empirical performance of an instrument. Track instrument performance over time.

Two data streams: single targets, ensemble backscatter

Echosounder Calibration

Prior to 1980's major source of error

Foote *et al.* (1987) Calibration of acoustic instruments for fish density estimation: a practical guide ICES CRR 144

Demer *et al.* (2015) Calibration of acoustic instruments. ICES CRR 326

3 Components: transmit, receive, system

3 Methods: reciprocity, calibrated hydrophone, standard target

Reciprocity

- absolute method of calibration (Foldy and Primakoff 1945, 1947)
- based on electroacoustic reciprocity principle using physical quantities (voltage, impedance, frequency, range, temperature, pressure)
- 3 possible components: projector (i.e. source), hydrophone (1 kHz to 500 kHz), transducer

3 Methods:

- 3 devices: ratio of the voltage across the terminals of the receiving device to the current driving the transmitting device.
- 2 transducers: transmit over known distance
- 1 transducer: single transducer and perfect reflector see MacLean (1940); Carstensen (1947)

Reciprocity Calibration

Calibrated Hydrophone: transmit

Source Level

The oscilloscope vpp (volts) is converted to $V_{so}(dB_v)$:

$$V_{so} = 20 \cdot \log(v_{pp}/2/1.414)$$

The Sonar equation for the one-way transmission to the standard:

$$V_{so} = SL-TL+S_s$$

$$TL_{cal} = 20 \cdot log(R_{cal}) + \alpha R_{cal}$$

SS is a calibration value provided with the standard, therefore:

Calibrated Hydrophone: receive

TS is a calibration value supplied with the standard.

Remembering that $G = G_1 + G_{tvg} + RG$,

with a 40 log TVG characteristic:

$$G_{tvg}$$
 = 40 log(R_{cal}) + 2 α R_{cal}
 G_1 = v_{det} - G_{tvg} - RG - V_s +TS - TL_{cal}

Laboratory Calibration Results

TRANS	SDUCER N	IEASUR	EMENTS	3	
	Part 1	Part 2	Part 3	Part 4	All Parts
Measured at: f (kHz)	38,0	38,0	38,0	38,0	38,0
Beamwidth	<u> </u>				
Longitudinal: ß1 (deg)					11,9
Transversal: ß2 (deg)					11,8
Directivity index (dB): 10 log(2.5/(sin(\(\beta1/2\))*sin(\(\beta2/2\)))					23,7
Equivalent two way beam angle (dB): 10 log(ß1*ß2/5800)					-16,1
Impedance					
Z (ohm):	58,6	60,5	62,6	52,5	14,6
Phase (deg):	-1,6	6,4	0,5	-0,5	8,3
Transmitting response (at 1 metre	9)				
Si (dB re 1 μPa/A):	205,1	205,1	205,6	204,9	205,2
Su (dB re 1 µPa/V):	169.8	169.5	169.7	170.5	181.9
Receiving sensitivity		'			
Theoretical open circuit (Si-354.1-20 log f): (dB re 1 V/μPa)	-180,6	-180,6	-180,1	-180,8	-180,
Leaking resistance (Mohm) :	OK	OK	OK	OK	OI
Type: ES38-12					
Serial no: 28096			,		
Watertemp: 19,0 °C					
Tested by: S Date:	24. jan. 2005				

Transducer Type:
Serial no.:
Frequency:
Tested by:
Date/time:
Voltage Generator:
Amplifier Gain:
Beam Width:
Source Level:
Di:

28096 38,0 kHz SN 24.01.2005 12:24:27 1000 mV 21 dB 11,85° 215,13 dB 23,95 dB Plane:
Hydrophone Type:
Hydrophone Serno.:
Hydrophone Cal.Date:
Distance to Hydrophone:
Water Temperature:
Module:
Element:

Transversal B&K 8104 2393692 25.10.04 6,00 m 19 °C 1

Standard Target Method

- ensure system output is constant relative to a standard target
- measure transmit-receive sensitivity of system on axis and over main lobe
- calibrate as system (i.e. platform, power supply, echosounder) is used in the field

Calibration components: sensitivity, directivity

Operationally: on axis, map beam pattern

Gain g_0 and S_a corr Values

$$S_v = P_{er} + 20\log_{10}(r) + 2\alpha_a r - 10\log_{10}\left(\frac{(p_{et}\lambda^2 g_0^2 c_w \tau \psi)}{32\pi^2}\right) - 2S_a corr$$
, and
 $TS = P_{er} + 40\log_{10}(r) + 2\alpha_a r - 10\log_{10}\frac{(p_{et}\lambda^2 g_0^2)}{16\pi^2} - 20\log_{10}\left(\frac{g(\alpha,\beta)}{g_0}\right)$,

where P_{er} is power, r is range, α is absorption coefficient, λ is wavelength, $g_{\rm o}$ is gain, $c_{\rm w}$ is speed of sound in water, τ is pulse duration, ψ is the equivalent two way beam angle,

http://support.echoview.com/WebHelp/Reference/Algorithms/Echosounder/Simrad/EK 60_Power_to_Sv_and_TS.htm

Calibration Outcome

$$\begin{split} S_v &= P_{er} + 20 \mathrm{log_{10}}(r) + 2\alpha_a r - 10 \mathrm{log_{10}}\left(\frac{(p_{et}\lambda(g_0^2)_w\tau\psi)}{32\,\pi^2}\right) - 2\delta_a corr \ , \ \mathrm{and} \\ TS &= P_{er} + 40 \mathrm{log_{10}}(r) + 2\alpha_a r - 10 \mathrm{log_{10}}\left(\frac{(p_{et}\lambda(g_0^2)_w\tau\psi)}{16\,\pi^2}\right) - 20 \mathrm{log_{10}}\left(\frac{g(\alpha,\beta)}{g_0}\right) \ , \end{split}$$

Operationally:

ER60/70/80 software: Update S_v gain and S_a correction values Echoview: Update .ecs file with new G_0 and S_a correction values

Sa Correction

- integration value (i.e. correction factor) required to make the theoretical and measured Sv match.
- accomplished by adjusting pulse length

Sa correction = theoretical gain - system gain theor Sa/meas Sa = 1, if not then adjust Sa correction

$$s_{a,corr} = \frac{1}{2} \frac{\frac{\tau_{nom}}{4} \sum_{i} P_{i}}{\tau_{nom} P_{\text{max}}} = \frac{1}{2} \frac{\sum_{i} P_{i}}{4 P_{\text{max}}}$$

where P is power, τ is pulse length, nom is nominal

Determining g_0 and $S_a corr$ Values

calc. TS gain =
$$\frac{TS_{measured} - TS_{theory}}{2} + g_{old}$$

calc. Sv gain =
$$\frac{10\log(Sa_{\text{measured}}/Sa_{\text{theory}})}{2} + g_{\text{old}} + Sa_{\text{old}}$$

calc. Sa correction = calc. Sv gain - calc. TS gain

new g_0 = calc. Sv gain new Sa correction = calc. Sa correction

Field Calibration Procedure

- at start of each survey, recommended at end of survey
- set up downriggers/stepper motors and place calibration sphere under transducers
- on axis (~10 min) and swing (~40 min) for each pulse length (typically 0.512, 1.024 ms) for each frequency
- analyze data using LOBES program, within Echoview, and/or tabulate in Excel

Calibration Setup

- 2 point anchor
- 3 down riggers/stepper motors
- harness and calibration sphere

Towbody Setup

Distance to Calibration Sphere?

	minimum	Transducer	Freq.	Wavelength	Beamwidth	Eff. radius	Diameter	Nearfield	2xNearfield	
		model								
			kHz	cm	degrees	cm	cm	m	m	
	$R = D^2/\lambda$	12-16/60	12	12.42	16	22.9	45.8	1.7	3.4	ield
										leid
whore	R = near fiel f = frequen	ES18	18	8.28	11	22.2	44.4	2.4	4.8	ngth
WITCIC										igui
		38-7	38	3.92	7	16.5	33.0	2.8	5.6	
		38-9	38	3.92	9	12.9	25.7	1.7	3.4	
		ES38 B	38	3.92	7	16.5	33.0	2.8	5.6	
		ES38-10	38	3.92	10	11.6	23.1	1.4	2.7	
		ES38-12	38	3.92	12	9.6	19.3	0.9	1.9	
		50-7	50	2.98	7	12.6	25.1	2.1	4.2	
		ES70-11	70	2.13	11	5.7	11.4	0.6	1.2	
		ES70-7C	70	2.13	7	9.0	17.9	1.5	3.0	
		ES120-7C	120	1.24	7	5.2	10.5	0.9	1.8	
		ES200-7C	200	0.75	7	3.1	6.3	0.5	1.1	
		ES333-7C	333	0.45	7	1.9	3.8	0.3	0.6	

Calibration Sphere

- Copper or Tungsten Carbide
- known diameter, known material properties

What Sound Speed to Use?

Average value between transducer and calibration sphere

Effect of Temperature on Gain

Bodholt 2002

AFSC: Seattle - Alaska

EK500 38 kHz

Lobes Output 120 kHz

Simrad LOBES

- software program to model gain and beam pattern
- beam pattern 4th order polynomial
- ongoing discussion of technique to estimate gains

```
Calibration Version
                         2.1.0.11
Date: 7/22/2007
Comments:
  70 kHz 512 swing
Reference Target:
                        -43.00 dB
                                          Min. Distance
                                                                    6.00 \, \text{m}
  TS Deviation
                                                                    7.00 m
                            6.0 dB
                                           Max. Distance
Transducer: ES70-7C Serial No.
  Frequency
                          70000 Hz
                                           Beamtype
                                                                     Split
                          27.00 dB
                                           Two Way Beam Angle
  Gain
                                                                  -21.0 dB
                                          Along. Angle Sens.
  Athw. Angle Sens.
                             23.00
                                                                      23.00
  Athw. Beam Angle
                          6.83 deg
                                          Along. Beam Angle
                                                                  6.78 deg
  Athw. Offset Angle
                          0.00 deg
                                           Along. Offset Angle 0.00 deg
                           0.00 \, dB
  SaCorrection
                                           Depth
                                                                   0.50 \, \text{m}
Transceiver: GPT 70 kHz 009072058c9d 3 ES70-7C
                                          Sample Interval
  Pulse Duration
                          0.512 ms
                                                                 0.095
                           1000 W
                                          Receiver Bandwidth
                                                                  4.69 kHz
  Power
Sounder Type:
  EK60 Version 2.1.1
TS Detection:
  Min. Value
                          -50.0 dB
                                           Min. Spacing
                                                                     100 %
  Max. Beam Comp.
                            6.0 dB
                                           Min. Echolength
                                                                       80 %
                                                                     180 %
  Max. Phase Dev.
                               8.0
                                          Max. Echolength
Environment:
  Absorption Coeff.
                       20.0 \, dB/km
                                          Sound Velocity
                                                                1488.8 m/s
Beam Model results:
  Transducer Gain
                       = 27.48 \text{ dB}
                                           SaCorrection
                                                                = -0.48 \text{ dB}
  Athw. Beam Angle = 6.50 \text{ deg}
                                          Along. Beam Angle = 6.55 \text{ deg}
  Athw. Offset Angle = 0.03 \text{ deg}
                                          Along. Offset Angle= 0.01 deg
Data deviation from beam model:
                               176 Athw. = 3.2 \text{ deg Along} = -2.4 \text{ deg}
                      No. =
                      No. =
                             270 \text{ Athw.} = 4.8 \text{ deg Along} = 0.1 \text{ deg}
Data deviation from polynomial model:
  RMS =
            0.07 dB
            0.21 dB
                      No. =
                               178 Athw. = 3.8 \text{ deg Along} = -3.2 \text{ deg}
                      No. =
                                80 Athw. = 3.1 \text{ deg} Along = -3.1 \text{ deg}
Data:
        Time
                 Distance
                           TS-c
                                     TS-u
                                                Athw.
                                                          Along
                                                                     sΑ
                  \lceil m \rceil
                            [dB]
                                     [dB]
                                                [deg]
                                                                  [m2/nm2]
   15:21:30.32
                   6.66
                           -43.79
                                   -55.69
                                               -4.65
                                                                       315
   15:21:30.57
                   6.65
                           -43.25
                                   -52.93
                                               -4.16
                                                          1.41
                                                                       591
  15:21:30.74
                   6.64
                           -42.92 -50.78
                                               -3.73
                                                          1.28
                                                                       972
```

LOBES Conundrum

Designed to estimate: gain, acoustic axis, beam width

- locations based on phase (i.e. lag time) differences and parameter that converts electronic (i.e. phase) to mechanical angle
- *but* no independent measurement of angle against phase
- phase is used to obtain target angles and to identify main lobe of beam

Calibration Procedure Conundrum

LOBES parameters results in compensated TS values for beam pattern

- physical location may be incorrect but the TS will be correct because beam pattern is shifted

2 Choices:

- use LOBES calculations
- calculate on axis gain and Sa correction values and beam angles from tank calibration

FAR Lab Calibration Calculations

ES-60 Triangle Wave

Transducer Stability

Calibration Analysis Synopsis

